

A Hybrid Network Platform for Collaborative Applications

Sauleh Eetemadi (Michigan State University)

Jason Van Eaton (Microsoft Research)

Outline

- What is multicast?
- Why IP-multicast is not fully deployed?
- Alternatives to IP-multicast
- Multi-Reflector Service developed by Microsoft Research
- The Multicast Game

What is multicast?

- Multicast is a type of traffic destined to a group of users (one-to-many type of traffic)
- IP-Multicast: The first attempt to design a highly efficient and scalable router level multicast protocol in the TCP/IP protocol stack.

If IP Multicast is not enabled...

IP-Multicast

Deployment Problems

- Pricing: Routers are not paid for replicating packets.
- "Chicken and Egg " problem:
 - There is no good software for multicast, because multicast protocols are not well supported.
 - Multicast protocols are not well supported, because there isn't high demand for it.
 - There isn't high demand for it, because there isn't good software...

The Alternative to IP-Multicast

- Application Layer Multicast
 - Pros:
 - No need for router support
 - Reliable
 - Cons:
 - Not efficient
 - Degraded quality and delay

Multi Reflector Optimization

- Several optimization problems arise from:
 - Different problem constraints (e.g., number of reflectors per island and paths vs. flows)
 - Different objective functions (Minimum delay, Maximum Throughput, Minimum Congestion)
- Results:
 - We have proven some of these problems to be NP-Hard.
 - We have proposed polynomial time solutions to others and have studied and estimated the multicast capacity of the resulting network.

The Multicast Game

- What would happens if the Multi Reflector Multicast Solution gets deployed? Would it change the economics of multicast traffic?
- Game Definition
 - Players: Network Administrators in ISPs Controlling Routers
 - Available Strategies:
 - Enabling/Disabling ISP customers to receive IP-Multicast traffic from outside the ISP.
 - Enabling/Disabling ISP customers to send IP-Multicast traffic to outside of the ISP.
 - Enabling/Disabling ISP customers to send/receive IP-Multicast to/from between themselves.
 - Players' Cost: Their routing traffic.

The Multicast Game: Simple Model

- Using a simplified model to
 - Investigate the effects of each player's action on other players.
 - Get insight to the dynamics of the game.

- P1 Strategy: EAI (Enable All Interfaces)
- P2 Strategy: EAI (Enable All Interfaces)
- P1 Cost: 1 in, M out
- P2 Cost: 1 in, N out

- P1 Strategy: DEI (Disable External Interface)
- P2 Strategy: EAI (Enable All Interfaces)
- P1 Cost: 2 in, M out
- P2 Cost: 2 in, N out

- P2 Strategy: EAI (Enable All Interfaces)
- P1 Cost: M in, M out
- P2 Cost: 2 in, N out

- P1 Strategy: DAI (Disable All Interfaces)
- P2 Strategy: DAI (Disable All Interfaces)
- P1 Cost: M in, M out
- P2 Cost: N in, N out

The Multicast Game: Simple Analysis

P1	DAI	DEI	EAI	01010101010101010 01010101010101010 0101010101010101
P2			0101010101	0101010101010101 010101010101010101 0101010101010101
DAI	(M,M)	(2,M)	(2,M)	← P1
	(N,N)	(N,N)	(N,N)	← P2
DEI	(M,M)	(2,M)	(2,M)	
	(2,N)	(2,N)	(2,N)	10101010101010
EAI	(M,M)	(2,M)	(1,M)	Weakly
	(2,N)	(2,N)	(1,N)	Dominating Strategy

(Packets Received, Packets Sent)

Conclusion

- Disabling/Enabling multicast internally does not change other players cost, but it does change the player's cost. Therefore all rational users should enable multicast traffic internally.
- If External Interface is multicast disabled other player's actions does not change the cost of this player.
- Only if external interface is enabled others can change this player's cost.
- If the external interface is enabled for one player the cost could only get lower.
- Thus, in this simple model, all rational users should enable multicast traffic on all their interfaces, to get the maximum profit.

Acknowledgement

- Dr. Jonathan Shapiro: My professor in the course: "Incentives and Cooperation in Networks and Distributed Systems"
- Microsoft Research and the ConferenceXP group
- Dr. Hayder Radha: My advisor